EconPapers    
Economics at your fingertips  
 

Forecasting the daily outbreak of topic-level political risk from social media using hidden Markov model-based techniques

Jong Hwan Suh

Technological Forecasting and Social Change, 2015, vol. 94, issue C, 115-132

Abstract: Nowadays, as an arena of politics, social media ignites political protests, so analyzing topics discussed negatively in the social media has increased in importance for detecting a nation's political risk. In this context, this paper designs and examines an automatic approach to forecast the daily outbreak of political risk from social media at a topic level. It evaluates the forecasting performances of topic features, investigated among the previous works that analyze social media data for politics, hidden Markov model (HMM)-based techniques, widely used for the anomaly detection with time-series data, and detection models, into which the topic features and the detection techniques are combined. When applied to South Korea's Web forum, Daum Agora, statistical comparisons with the constraints of false positive rate of <0.1 and timeliness of <0 show that, for accuracy, social network-based feature and, for sensitivity, energy-based feature give the best results but there is no single best detection technique for accuracy and sensitivity. Besides, they demonstrate that the detection model using Markov switching model with jumps (MSJ) with social-network based feature is the best combination for accuracy; there is no single best detection model for sensitivity. This paper helps make a move to prevent the national political risk, and eventually the predictive governance benefits the people.

Keywords: Political risk; Social media; Topic extraction; Sentiment; Social network; Hidden Markov model; Markov switching model (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162514002534
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:94:y:2015:i:c:p:115-132

DOI: 10.1016/j.techfore.2014.08.014

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:tefoso:v:94:y:2015:i:c:p:115-132