Estimating the Lambda measure in multiple-merger coalescents
Miró Pina, Verónica,
Joly, Émilien and
Siri-Jégousse, Arno
Theoretical Population Biology, 2023, vol. 154, issue C, 94-101
Abstract:
Multiple-merger coalescents, also known as Λ-coalescents, have been used to describe the genealogy of populations that have a skewed offspring distribution or that undergo strong selection. Inferring the characteristic measure Λ, which describes the rates of the multiple-merger events, is key to understand these processes. So far, most inference methods only work for some particular families of Λ-coalescents that are described by only one parameter, but not for more general models. This article is devoted to the construction of a non-parametric estimator of the density of Λ that is based on the observation at a single time of the so-called Site Frequency Spectrum (SFS), which describes the allelic frequencies in a present population sample. First, we produce estimates of the multiple-merger rates by solving a linear system, whose coefficients are obtained by appropriately subsampling the SFS. Then, we use a technique that aggregates the information extracted from the previous step through a kernel type of re-construction to give a non-parametric estimation of the measure Λ. We give a consistency result of this estimator under mild conditions on the behavior of Λ around 0. We also show some numerical examples of how our method performs.
Keywords: Coalescent theory; Multiple merger; Site frequency spectrum; Non-parametric estimation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580923000618
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:154:y:2023:i:c:p:94-101
DOI: 10.1016/j.tpb.2023.09.002
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().