Role of stay-at-home requests and travel restrictions in preventing the spread of COVID-19 in Japan
Shasha Liu and
Toshiyuki Yamamoto
Transportation Research Part A: Policy and Practice, 2022, vol. 159, issue C, 1-16
Abstract:
COVID-19 is one of the worst global health crises in a century. Japan confirmed its first case of COVID-19 in mid-January and declared a state of emergency in April and May 2020, urging people to stay at home and reduce travel. Using Mobile Spatial Statistics (i.e., population statistics created from operational data of mobile terminal networks), we estimated daily intra- and inter-prefectural population mobility in the Tokyo Megalopolis Region, Japan in 2020. Then, we developed a compartmental model with population mobility to explore the role of stay-at-home requests and travel restrictions in preventing the spread of COVID-19. This model describes the COVID-19 pandemic through a susceptible-exposed-presymptomatic infectious-undocumented and documented infectious-removed (SEPIR) process and incorporates intra- and inter-prefectural population mobility into the transmission process. We found that people significantly reduced travel during the state of emergency, although stay-at-home requests and travel restrictions were recommended rather than mandatory. The reduction in population mobility, combined with other control measures, resulted in a substantial reduction in effective reproduction numbers to below 1, thus controlling the first wave of the pandemic. Moreover, the relationship between population mobility and COVID-19 transmission changed over time. The dampening of the second wave of the pandemic indicated that smaller reductions in population mobility could result in pandemic control, probably because of other social distancing behaviors. Our proposed model can be used to analyze the impact of different public health interventions, and our findings shed light on the effectiveness of soft containments in curbing the spread of COVID-19.
Keywords: COVID-19 pandemic; Human mobility; State of emergency; Stay-at-home requests; Travel restrictions; Mobile spatial statistics (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0965856422000568
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:159:y:2022:i:c:p:1-16
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.tra.2022.03.009
Access Statistics for this article
Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose
More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().