CIAM: A data-driven approach for classifying long-term engagement of public transport riders at multiple temporal scales
Rachel Cardell-Oliver and
Doina Olaru
Transportation Research Part A: Policy and Practice, 2022, vol. 165, issue C, 321-336
Abstract:
Many human activities, including daily travel, show a mix of stable, intermittent and changing patterns in demand by individuals over time. However, the lack of continuous, long-term, passenger-linked data for public transport (PT) journeys means that we do not know how passenger ridership evolves in real-world networks. This paper proposes the CIAM model for classifying long-term passenger engagement with PT. CIAM is a data-driven model combining year-on-year churn (C), monthly intensity (I), annual (A) and multi-year (M) engagement. Parameter search algorithms are used to ensure that the learned features are distinctive and robust. We evaluated CIAM using a 5-year dataset from a PT network with over 300 million journeys. CIAM identified distinct patterns of long-term ridership at multiple time scales. Although the total number of annual journeys was relatively stable over the five years, we found long-term differences between passenger subgroups. Churn of passengers was a major factor in ridership with only 55% of passengers retained from year to year. Patterns of annual engagement are often intermittent, so short-term snapshots of a few weeks are typically not good indicators for longer term engagement. Only 27% of high-frequency, full-fare riders still have the same level of engagement four years later, compared with 55% who continue high-frequency engagement after only one year.
Keywords: Public transport; Customer segmentation; Smart card data; Urban computing; Year-on-year churn; Monthly intensity; Annual engagement; Multi-year engagement; CIAM (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0965856422002300
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:165:y:2022:i:c:p:321-336
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.tra.2022.09.002
Access Statistics for this article
Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose
More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().