EconPapers    
Economics at your fingertips  
 

Predicting passenger satisfaction in public transportation using machine learning models

Elkin Ruiz, Wilfredo F. Yushimito, Luis Aburto and Rolando de la Cruz

Transportation Research Part A: Policy and Practice, 2024, vol. 181, issue C

Abstract: Enhancing the understanding of passenger satisfaction in public transportation is crucial for operators to refine transit services and to establish and elevate quality standards. While many researchers have tackled this issue using diverse tools and methods, the prevalent approach involves surveys with discrete choice models or structural equations. However, a common limitation of these models lies in their inherent assumptions and predefined relationships between dependent and independent variables.

Keywords: Bus public transportation; Machine learning; Passenger satisfaction; Prediction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0965856424000430
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:181:y:2024:i:c:s0965856424000430

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.tra.2024.103995

Access Statistics for this article

Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose

More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transa:v:181:y:2024:i:c:s0965856424000430