Time constrained liner shipping network design
Christian Vad Karsten,
Berit Dangaard Brouer,
Guy Desaulniers and
David Pisinger
Transportation Research Part E: Logistics and Transportation Review, 2017, vol. 105, issue C, 152-162
Abstract:
We present a mathematical model and a solution method for the liner shipping network design problem. The model takes into account coordination between vessels and transit time restrictions on the cargo flow. The solution method is an improvement heuristic, where an integer program is solved iteratively to perform moves in a large neighborhood search. Our improvement heuristic is applicable as a real-time decision support tool for a liner shipping company. It can be used to find improvements to the network when evaluating changes in operating conditions or testing different scenarios. Computational results on the benchmark suite LINER-LIB are reported.
Keywords: Liner shipping; Network design; Transit time; Transshipments (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554515303094
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:105:y:2017:i:c:p:152-162
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2016.03.010
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().