A network based dynamic air traffic flow model for en route airspace system traffic flow optimization
Dan Chen,
Minghua Hu,
Honghai Zhang,
Jianan Yin and
Ke Han
Transportation Research Part E: Logistics and Transportation Review, 2017, vol. 106, issue C, 1-19
Abstract:
This study proposes a mesoscopic dynamic air traffic model based on a dynamic network for en route airspaces by characterizing the dynamics and distribution of traffic speed. Based on this model, we solve a flow optimization problem for enforcing capacity constraints with the minimum operational cost using a dual decomposition method. A case study of an en route airspace in Shanghai demonstrates the accuracy of the proposed model in successfully capturing the flow dynamics, as well as the effectiveness of the proposed optimization framework to reduce en route delays by balancing the dynamic traffic demand and airspace capacity.
Keywords: Air traffic management; En route traffic flow optimization; Flight operational cost (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554516308079
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:106:y:2017:i:c:p:1-19
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2017.07.009
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().