A machine learning approach for the operationalization of latent classes in a discrete shipment size choice model
Raphael Piendl,
Tilman Matteis and
Gernot Liedtke
Transportation Research Part E: Logistics and Transportation Review, 2019, vol. 121, issue C, 149-161
Abstract:
This paper elaborates a novel approach for implementation of latent segments concerning behaviorally sensitive shipment size choice in strategic interregional freight transport models. Discrete shipment size choice models are estimated for different homogenous segments formed by latent class analysis. A machine learning technique called Bayesian classifier is applied to link segments obtained from a sample to data of commodity flows being available on a national level. Finally, in an exemplary scenario, the impact of information and communication technologies on shipment size distributions is calculated, revealing moderate elasticities and a predominant substitution of less than truck loads by full truck loads.
Keywords: Freight transport; Shipment size; Latent class analysis; Machine learning; Bayesian classification (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554517302351
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:121:y:2019:i:c:p:149-161
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2018.03.005
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().