Using machine learning to analyze air traffic management actions: Ground delay program case study
Yulin Liu,
Yi Liu,
Mark Hansen,
Alexey Pozdnukhov and
Danqing Zhang
Transportation Research Part E: Logistics and Transportation Review, 2019, vol. 131, issue C, 80-95
Abstract:
We model the impact of weather and arrival demand on ground delay program (GDP) incidence. We use Support Vector Machine (SVM) to analyze how regional convective weather affects GDP incidence and find the impact depends on both distance and direction of convective activity from the airport. We then train and compare the performance of logistic regression (LR) and random forest (RF) in predicting GDP incidence using an SVM-generated regional weather variable, local weather and arrival demand. Generally, RF outperforms LR. Convective weather is the most important factor in predicting GDP incidence at Atlanta International Airport (ATL), while arrival demand has greater impact for the other airports studied. We also examined model transferability across different airports. Lastly, we build GDP duration prediction models to enable a user to assess how long a GDP is likely to continue, if it is in effect in a given hour.
Keywords: Ground delay program; Convective weather; Support vector machine; Logistic regression; Random forest; Regularized linear models; Feature importance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554518312444
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:131:y:2019:i:c:p:80-95
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2019.09.012
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().