Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation
Bayan Hamdan and
Ali Diabat
Transportation Research Part E: Logistics and Transportation Review, 2020, vol. 134, issue C
Abstract:
Emergency supply of blood in disasters is a crucial task for humanitarian aid. In this paper, we present a bi-objective robust optimization model for the design of blood supply chains that are resilient to disaster scenarios. The proposed two-stage stochastic optimization model aims at minimizing the time and cost of delivering blood to hospitals after the occurrence of a disaster, while considering possible disruptions in blood facilities and transportation routes. A Lagrangian relaxation-based algorithm is developed that is capable of solving large-scale instances of the model. We apply this framework to a real case study of blood banks in Jordan.
Keywords: Blood supply chains; Disaster mitigation; Robust optimization; Supply chain network design; Stochastic programming; Lagrangian relaxation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554518300656
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:134:y:2020:i:c:s1366554518300656
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2019.08.005
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().