EconPapers    
Economics at your fingertips  
 

A cooperative strategy for optimizing vehicle relocations and staff movements in cities where several carsharing companies operate simultaneously

Ximing Chang, Jianjun Wu, Gonçalo Homem de Almeida Correia, Huijun Sun and Ziyan Feng

Transportation Research Part E: Logistics and Transportation Review, 2022, vol. 161, issue C

Abstract: Carsharing has become a popular travel mode owing to its convenience of use, easy parking, and low cost of using a car by those who only need it occasionally. However, because of the inadequate location of carsharing stations (station-based systems) or vehicles (free-floating systems), effectively requiring expensive and complex relocation strategies, a number of customers are lost, and some carsharing companies are facing bankruptcy. This study proposes a data-driven, dynamic, multi-company relocation method, which aims to reduce relocation costs and increase profit in one-way carsharing station-based systems through cooperative strategies. The method starts from the prediction of carsharing inflows and outflows at each station throughout the day using a new deep learning algorithm designated as “the attention-enhanced temporal graph convolutional network”. It adopts an encoder-decoder structure to simultaneously capture the temporal and spatial carsharing usage patterns. A two-phase integer programming model is proposed to optimize the process of vehicle relocation and staff rebalancing with cooperative relocation strategies: the sharing of relocation staff, the sharing of vehicles and stations among the different companies. An adaptive large neighborhood search based heuristic approach is implemented to solve the two-phase model. Based on the 6-month travel records from four carsharing companies operating simultaneously in Fuzhou, China, the proposed model and cooperative strategies are assessed. The results show that the total profit of the four carsharing companies can be increased by 25.49% with the cooperation of staff and vehicles. In addition, we prospect the future relocation with automated vehicles, whereby the profit can be increased by 46.69% without the need to employ the relocation staff.

Keywords: One-way carsharing; Multi-step demand forecasting; Graph convolutional network; Cooperative relocation; Staff rebalancing (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554522001028
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:161:y:2022:i:c:s1366554522001028

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic

DOI: 10.1016/j.tre.2022.102711

Access Statistics for this article

Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley

More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transe:v:161:y:2022:i:c:s1366554522001028