EconPapers    
Economics at your fingertips  
 

Data-driven Wasserstein distributionally robust mitigation and recovery against random supply chain disruption

Yunzhi Cao, Xiaoyan Zhu and Houmin Yan

Transportation Research Part E: Logistics and Transportation Review, 2022, vol. 163, issue C

Abstract: This paper studies joint robust network design and recovery investment management in a production supply chain, considering limited historical data about disruptions and their possibilities. The supply chain is subject to uncertain disruptions that reduce production capacity at plants, and the cascading failures propagate along the supply chain network. A data-driven two-stage distributionally robust optimization model with Wasserstein ambiguity set (TWDRO) is constructed to determine the strategic location and tactical allocation decisions in the first stage as well as the operational production and inventory decisions and recovery policy by recourse in the second stage. This paper also proposes a model for depicting a recovery-fund based mitigation strategy, and the model is general in depicting the accelerated, constant-speed, and decelerated recovery processes. In addition, partial backorder policy is adopted to depict the customers’ choices upon product stockout. The TWDRO model is solved by converting it to a mixed integer linear programming model and designing a joint solution method using benders decomposition and genetic algorithm. The performance of TWDRO solutions is demonstrated through numerical experiments and a case study, benchmarking on the stochastic programming and robust optimization approaches. This paper shows the effectiveness and robustness of TWDRO and provides managerial implications and suggestions for supply chain disruption and recovery management.

Keywords: Supply chain disruption management; Recovery-fund based mitigation strategy; Partial backorders; Wasserstein distributionally robust optimization; Joint benders-decomposition and genetic-algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554522001429
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:163:y:2022:i:c:s1366554522001429

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic

DOI: 10.1016/j.tre.2022.102751

Access Statistics for this article

Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley

More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transe:v:163:y:2022:i:c:s1366554522001429