A multi-view attention-based spatial–temporal network for airport arrival flow prediction
Zhen Yan,
Hongyu Yang,
Yuankai Wu and
Yi Lin
Transportation Research Part E: Logistics and Transportation Review, 2023, vol. 170, issue C
Abstract:
Accurate airport arrival flow prediction is a precondition for intelligent air traffic flow management. However, most existing studies focus on the dynamic traffic flow in a single-airport scenario, which usually ignores the spatial interactions among airports. Modelling network-wide spatial dependencies among airports is difficult because it requires models to consider multiple underlying factors jointly. We propose a multi-view fusion approach to automatically learn an adjacency matrix from flight duration and flight schedule factors. The learned adjacency matrix is then fed into a specially designed graph convolutional block, which governs the message passing process among airports. Finally, the graph convolutional block with the learned adjacency matrix is embedded into the gated recurrent units to capture temporal dependencies. Experimental results on a real-world dataset for the multistep prediction task show the effectiveness and efficacy of the proposed model. In addition, visualisation and analysis of the learned adjacency matrix verify that the proposed multi-view fusion approach is capable of learning informative spatial interaction patterns.
Keywords: Airport arrival flow prediction; Deep learning; Spatial–temporal dependencies; Multi-view attention mechanism; Graph neural network (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136655452200374X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:170:y:2023:i:c:s136655452200374x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2022.102997
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().