EconPapers    
Economics at your fingertips  
 

Stochastic ridesharing equilibrium problem with compensation optimization

Tongfei Li, Min Xu, Huijun Sun, Jie Xiong and Xueping Dou

Transportation Research Part E: Logistics and Transportation Review, 2023, vol. 170, issue C

Abstract: In the urban traffic system with ridesharing programs, we develop a generalized stochastic user equilibrium model to formulate travelers’ mode and route choice behavior. To suit more general scenarios, the proposed model takes into consideration travelers’ heterogeneity in terms of car ownership and value of time, and travelers’ limited perceived information based on the stochastic user equilibrium principle instead of Wardrop’s user equilibrium principle. The proposed model is formulated as variational inequalities and an equivalent nonlinear mixed complementarity problem due to the inseparable and asymmetric travel cost functions. Furthermore, we address the decision-making problem of ridesharing compensation from the perspective of traffic managers and policy-makers who want to minimize the total travel cost and vehicular air pollution emissions simultaneously. A bi-objective optimization model and two single-objective optimization models are proposed to formulate this decision-making problem, in which travelers’ mode and route choice behavior has been respected. As a mathematical problem with complementarity constraints, the bi-objective optimization model is solved by an improved Non-Dominated Sorting Genetic Algorithm II to generate a set of Pareto-optimal solutions for policy-makers and allow them to choose desired solutions. Finally, several numerical experiments based on two different scales of networks are conducted to demonstrate the properties of the problem and the performance of the proposed model and algorithm. The results show that rational pricing of ridesharing compensation can indeed mitigate urban traffic congestion and pollution emissions simultaneously. Moreover, by integrating travelers’ choice behavior based on the stochastic user equilibrium principle instead of the user equilibrium principle in the ridesharing compensation optimization model, this study derives a series of more effective decision-making strategies for ridesharing compensation.

Keywords: Ridesharing; Stochastic user equilibrium; Compensation pricing; Variational inequality; Traffic assignment (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554522003763
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:170:y:2023:i:c:s1366554522003763

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic

DOI: 10.1016/j.tre.2022.102999

Access Statistics for this article

Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley

More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transe:v:170:y:2023:i:c:s1366554522003763