EconPapers    
Economics at your fingertips  
 

An application-oriented testing regime and multi-ship predictive modeling for vessel fuel consumption prediction

Son Nguyen, Xiuju Fu, Daichi Ogawa and Qin Zheng

Transportation Research Part E: Logistics and Transportation Review, 2023, vol. 177, issue C

Abstract: Fuel consumption prediction (FCP) of vessels is the core of many decarbonization efforts by the maritime industry. Understanding the capability of machine learning (ML) FCP models is essential in various decision-making processes. However, the current model testing practice does not reflect their uncertainty and resilience in actual applications. To address this gap, this study proposes a testing regime that could provide insights into models’ behaviors, dependency on different features, and potential vulnerabilities to data uncertainties in the deployment phase. Two multi-ship FCP models were developed for testing, using extreme gradient boosting (XGB) and multi-layer perceptron artificial neural network (ANN) algorithms on noon reports of a container fleet operated globally in 2.5 years. Unlike previous studies, which explicitly indicated the superior ML algorithms, results from this study depicted a complicated situation with no decisive dominance of one algorithm over another, suggesting the potential of model combination and cooperation for optimal application performance. Aiding the FCP model development efforts, this study also includes findings regarding (1) the optimal configurations for ANN models, and (2) the reliance of FCP ML models and algorithms on different fuel consumption influencing factors. To our knowledge, this study is among the first to advocate a more comprehensive understanding of AI-based FCP models’ characteristics in realistic scenarios instead of simple selections based on accuracy indicators.

Keywords: Container shipping; Fuel consumption prediction; Model testing; Testing scenarios; Extreme gradient boosting; Artificial neural network; Machine learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554523002491
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:177:y:2023:i:c:s1366554523002491

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic

DOI: 10.1016/j.tre.2023.103261

Access Statistics for this article

Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley

More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transe:v:177:y:2023:i:c:s1366554523002491