Spatiotemporal analysis of bike-share demand using DTW-based clustering and predictive analytics
Carmen Kar Hang Lee and
Eric Ka Ho Leung
Transportation Research Part E: Logistics and Transportation Review, 2023, vol. 180, issue C
Abstract:
This paper investigates bike-share activities and explores their relationships with neighborhood features, advancing our current knowledge for integrating cycle facilities into urban space to support first/last-mile mobility. To identify distinct demand patterns, bike stations are clustered based on time-series ridership. Measuring the similarity between time-series data in the transportation field should take into account the influence of phase difference because similar demands happening in the morning and in the afternoon should be considered dissimilar. This study uses a weighted Dynamic Time Warping to address this issue by assigning a larger weight to data points with a larger time difference, enabling a more realistic measure to compare ridership. Using bike-share trip data from Citi Bike, we identified eight station clusters, each of which exhibits unique temporal activities. We further integrated the locations of various points of interest to explore the profiles of the clusters. Bike stations that are closer to public transport, commercial buildings and food service establishments are generally more popular, suggesting that incorporating spatial contexts can develop a richer understanding of bike-share usage. In addition, this study goes beyond descriptive analytics by investigating the role of neighborhood features in predicting cluster memberships of bike stations. Our results show that non-tree-based models, such as Support Vector Machines and K-Nearest Neighbors, outperform tree-based models. This study provides valuable insights for both urban planners and bike-share operators. When assessing the potential of new bike-share infrastructure, urban planners can deploy our models to identify the cluster-specific demand pattern based on neighborhood features. Bike-share operators can also utilize our findings to identify neighborhoods that require strategic supply of bikes and parking space that may vary within a day.
Keywords: Bike-share; First/last-mile mobility; Built environment; Dynamic time warping; Clustering; Classification algorithms (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554523003496
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:180:y:2023:i:c:s1366554523003496
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2023.103361
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().