EconPapers    
Economics at your fingertips  
 

A decision framework for decomposed stowage planning for containers

Yinping Gao and Lu Zhen

Transportation Research Part E: Logistics and Transportation Review, 2024, vol. 183, issue C

Abstract: Stowage planning is crucial to the efficiency of loading containers onto vessels, which can affect the competitiveness of ports. In this paper, we study the stowage problem and consider the storage locations of containers in the yard. A decision framework is proposed to optimize the stowage, which is decomposed into three phases: allocating storage locations to container blocks, the stacking slots of vessel bays, and the stowing sequences through which containers are stowed. We formulate mixed integer programming models to minimize container relocations, the moving distances from blocks to bays, and operation times of containers in the proposed decision framework. An adaptive large neighborhood search (ALNS) algorithm based on heuristic rules is then designed to solve the optimization problem. Numerical experiments with different scales are conducted to verify the models and algorithm. Comparisons of various methods such as CPLEX and particle swarm optimization, also demonstrate the effectiveness of the ALNS algorithm in terms of its solution performance. A sensitivity analysis of the relocation and bay utilization rates is also conducted, which can provide port operators with managerial insights. Robustness is tested by comparing the objective value gaps when encountering deviations in container weight and size between the actual and expected information. There is a small gap of less than 2% in the solutions, which are solved from the models with parameter deviations. Port operators can develop stowage plans according to the classification of container attributes, and the stowing can achieve fewer relocations within the optimal operation time.

Keywords: Port operations; Container stowage; Decomposed decisions; Mixed integer programming; Heuristic-based optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554524000103
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:183:y:2024:i:c:s1366554524000103

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic

DOI: 10.1016/j.tre.2024.103420

Access Statistics for this article

Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley

More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transe:v:183:y:2024:i:c:s1366554524000103