Data-driven drone pre-positioning for traffic accident rapid assessment
Zhu Meng,
Ning Zhu,
Guowei Zhang,
Yuance Yang,
Zhaocai Liu and
Ginger Y. Ke
Transportation Research Part E: Logistics and Transportation Review, 2024, vol. 183, issue C
Abstract:
A rise in traffic accidents has led to both traffic congestion and subsequent secondary accidents. Effectively addressing this issue requires rapid accident investigation and management. In this paper, we aim to improve the efficiency of traffic accident assessment and investigation with the aid of drone technologies. Our approach involves strategically pre-positioning drones, enabling traffic supervisory agencies to dispatch drones immediately upon receiving an accident report. Methodology-wise, we present a data-driven robust stochastic optimization (RSO) model, which encapsulates the uncertainty of traffic accidents within a scenario-wise Wasserstein ambiguity set. To the best of our knowledge, this is the first study that incorporates covariates, i.e., weather conditions, into the Wasserstein ambiguity set with the CVaR metric. We demonstrate that the proposed RSO model can be reformulated into a mixed-integer programming model, allowing an efficient solution approach. Via a real-world dataset of London traffic accidents, we validate the practical applicability of the RSO model. Across various parameter settings, our RSO model exhibits superior out-of-sample performance compared with various benchmark models. The numerical results yield valuable insights for traffic supervisory agencies.
Keywords: Traffic accident assessment; Drone pre-positioning; Wasserstein metric; Robust stochastic optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554524000425
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:183:y:2024:i:c:s1366554524000425
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2024.103452
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().