Min–Max exact and heuristic policies for a two-echelon supply chain with inventory and transportation procurement decisions
Luca Bertazzi,
Adamo Bosco and
Demetrio Laganà
Transportation Research Part E: Logistics and Transportation Review, 2016, vol. 93, issue C, 57-70
Abstract:
We study the problem in which one supplier delivers a product to a set of retailers over time by using an outsourced fleet of vehicles. Since the probability distribution of the demand is not known, we provide a Min–Max approach to find robust policies. We show that the optimal Min-Expected Value policy can be very poor in the worst case. We provide a Min–Max Dynamic Programming formulation that allows us to exactly solve the problem in small instances. Finally, we implement a Min–Max Matheuristic to solve benchmark instances and show that it is very effective.
Keywords: Inventory; Transportation procurement; Uncertain demand; Min–Max policies; Dynamic programming; Matheuristic algorithms (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554515302933
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:93:y:2016:i:c:p:57-70
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2016.05.008
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().