A rolling horizon approach to the high speed train rescheduling problem in case of a partial segment blockage
Shuguang Zhan,
Leo G. Kroon,
Jun Zhao and
Qiyuan Peng
Transportation Research Part E: Logistics and Transportation Review, 2016, vol. 95, issue C, 32-61
Abstract:
This paper reschedules train services on a double-track high speed railway in a disrupted situation, where one track of a segment is temporarily unavailable. We have to decide the sequence of train services passing through the blocked segment, the arrival and departure time of each train service at each station, and the canceled train services. Three practical train rescheduling strategies are explicitly compared and formulated by three MILP models. The uncertain duration of the disruption is handled. A rolling horizon approach is applied to solve our models. The models are tested on a real-world instance of the Beijing-Shanghai high speed railway.
Keywords: High speed railway; Partial blockage; Train rescheduling; Integer programming (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554516300497
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:95:y:2016:i:c:p:32-61
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2016.07.015
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().