EconPapers    
Economics at your fingertips  
 

The deceitful Connected and Autonomous Vehicle: Defining the concept, contextualising its dimensions and proposing mitigation policies

Alexandros Nikitas, Simon Parkinson and Mauro Vallati

Transport Policy, 2022, vol. 122, issue C, 1-10

Abstract: The Connected and Autonomous Vehicle (CAV) is an emerging mobility technology that may hold a paradigm-changing potential for the future of transport policy and planning. Despite a wealth of likely benefits that have made their eventual launch inescapable, CAVs may also be a source of unprecedented disruption for tomorrow's travel eco-systems because of their vulnerability to cyber-threats, hacking and misinformation. CAVs manipulated by users, traffic controllers or third parties may act in deceitful ways. This scene-setting work introduces the deceitful CAV, a vehicle that operates in a deceitful manner towards routing and control functionality for ‘selfish’ or malicious purposes and contextualises its diverse expressions and dimensions. It specifically offers a systematic taxonomy of eight distinctive deceitful behaviours namely: suppression/camouflage, overloading, mistake, substitution, target conditioning, repackaging capability signatures, amplification and reinforcing impression. These as exemplified by their most common attack forms (i.e., starvation, denial-of-service, session hijacking, man-in-the-middle, poisoning, masquerading, flooding and spoofing) are then benchmarked against five key dimensions referring to time frame (short to long duration), engagement (localised to systemic), urban traffic controller infrastructure (single to multiple components), scale (low to high), and impact (low to high). We then suggest mitigation strategies to protect CAV technology against these dangers. These span from purely technological measures referring to the machine-centric triad of vehicles, communication, and control system including adversarial training, heuristic decision algorithms and weighted voting mechanisms to human factor measures that focus on education, training, awareness enhancement, licensing and legislation initiatives that will enable users and controllers to prevent, control or report deceitful activities.

Keywords: Connected and autonomous vehicles; Deceitful connected and autonomous vehicles; Artificial intelligence and deceitful behaviour; Urban traffic control; Future mobility disruption (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0967070X22001007
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:trapol:v:122:y:2022:i:c:p:1-10

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.tranpol.2022.04.011

Access Statistics for this article

Transport Policy is currently edited by Y. Hayashi

More articles in Transport Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:trapol:v:122:y:2022:i:c:p:1-10