A latent Gaussian process model for analysing intensive longitudinal data
Yunxiao Chen and
Siliang Zhang
LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library
Abstract:
Intensive longitudinal studies are becoming progressively more prevalent across many social science areas, and especially in psychology. New technologies such as smart-phones, fitness trackers, and the Internet of Things make it much easier than in the past to collect data for intensive longitudinal studies, providing an opportunity to look deep into the underlying characteristics of individuals under a high temporal resolution. In this paper we introduce a new modelling framework for latent curve analysis that is more suitable for the analysis of intensive longitudinal data than existing latent curve models. Specifically, through the modelling of an individual-specific continuous-time latent process, some unique features of intensive longitudinal data are better captured, including intensive measurements in time and unequally spaced time points of observations. Technically, the continuous-time latent process is modelled by a Gaussian process model. This model can be regarded as a semi-parametric extension of the classical latent curve models and falls under the framework of structural equation modelling. Procedures for parameter estimation and statistical inference are provided under an empirical Bayes framework and evaluated by simulation studies. We illustrate the use of the proposed model though the analysis of an ecological momentary assessment data set.
Keywords: Gaussian process; latent curve analysis; structural equation modelling; intensive longitudinal data; ecological momentary assessment; time‐varying latent trait (search for similar items in EconPapers)
JEL-codes: C1 (search for similar items in EconPapers)
Pages: 24 pages
Date: 2020-05-01
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Published in British Journal of Mathematical and Statistical Psychology, 1, May, 2020, 73(2), pp. 237 - 260. ISSN: 0007-1102
Downloads: (external link)
http://eprints.lse.ac.uk/101121/ Open access version. (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ehl:lserod:101121
Access Statistics for this paper
More papers in LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library LSE Library Portugal Street London, WC2A 2HD, U.K.. Contact information at EDIRC.
Bibliographic data for series maintained by LSERO Manager ().