EconPapers    
Economics at your fingertips  
 

Double generative adversarial networks for conditional independence testing

Chengchun Shi, Tianlin Xu, Wicher Bergsma and Lexin Li

LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library

Abstract: In this article, we study the problem of high-dimensional conditional independence testing, a key building block in statistics and machine learning. We propose an inferential procedure based on double generative adversarial networks (GANs). Specifically, we first introduce a double GANs framework to learn two generators of the conditional distributions. We then integrate the two generators to construct a test statistic, which takes the form of the maximum of generalized covariance measures of multiple transformation functions. We also employ data-splitting and cross-fitting to minimize the conditions on the generators to achieve the desired asymptotic properties, and employ multiplier bootstrap to obtain the corresponding p-value. We show that the constructed test statistic is doubly robust, and the resulting test both controls type-I error and has the power approaching one asymptotically. Also notably, we establish those theoretical guarantees under much weaker and practically more feasible conditions compared to the existing tests, and our proposal gives a concrete example of how to utilize some state-of-the-art deep learning tools, such as GANs, to help address a classical but challenging statistical problem. We demonstrate the efficacy of our test through both simulations and an application to an anti-cancer drug dataset.

Keywords: conditional independence; double-robustness; generalized covariance measure; generative adversarial networks; multiplier bootstrap (search for similar items in EconPapers)
JEL-codes: C1 (search for similar items in EconPapers)
Date: 2021-12-01
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Published in Journal of Machine Learning Research, 1, December, 2021. ISSN: 1532-4435

Downloads: (external link)
http://eprints.lse.ac.uk/112550/ Open access version. (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ehl:lserod:112550

Access Statistics for this paper

More papers in LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library LSE Library Portugal Street London, WC2A 2HD, U.K.. Contact information at EDIRC.
Bibliographic data for series maintained by LSERO Manager (lseresearchonline@lse.ac.uk).

 
Page updated 2025-03-31
Handle: RePEc:ehl:lserod:112550