Truncated Poisson-Dirichlet approximation for Dirichlet process hierarchical models
Junyi Zhang and
Angelos Dassios
LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library
Abstract:
The Dirichlet process was introduced by Ferguson in 1973 to use with Bayesian nonparametric inference problems. A lot of work has been done based on the Dirichlet process, making it the most fundamental prior in Bayesian nonparametric statistics. Since the construction of Dirichlet process involves an infinite number of random variables, simulation-based methods are hard to implement, and various finite approximations for the Dirichlet process have been proposed to solve this problem. In this paper, we construct a new random probability measure called the truncated Poisson–Dirichlet process. It sorts the components of a Dirichlet process in descending order according to their random weights, then makes a truncation to obtain a finite approximation for the distribution of the Dirichlet process. Since the approximation is based on a decreasing sequence of random weights, it has a lower truncation error comparing to the existing methods using stick-breaking process. Then we develop a blocked Gibbs sampler based on Hamiltonian Monte Carlo method to explore the posterior of the truncated Poisson–Dirichlet process. This method is illustrated by the normal mean mixture model and Caron–Fox network model. Numerical implementations are provided to demonstrate the effectiveness and performance of our algorithm.
JEL-codes: C1 (search for similar items in EconPapers)
Date: 2023-01-04
New Economics Papers: this item is included in nep-cmp, nep-dcm and nep-ecm
References: View complete reference list from CitEc
Citations:
Published in Statistics and Computing, 4, January, 2023. ISSN: 0960-3174
Downloads: (external link)
http://eprints.lse.ac.uk/117690/ Open access version. (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ehl:lserod:117690
Access Statistics for this paper
More papers in LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library LSE Library Portugal Street London, WC2A 2HD, U.K.. Contact information at EDIRC.
Bibliographic data for series maintained by LSERO Manager ().