EconPapers    
Economics at your fingertips  
 

Sentiment-based predictions of housing market turning points with Google trends

Marian Alexander Dietzel

International Journal of Housing Markets and Analysis, 2016, vol. 9, issue 1, 108-136

Abstract: Purpose - – Recent research has found significant relationships between internet search volume and real estate markets. This paper aims to examine whether Google search volume data can serve as a leading sentiment indicator and are able to predict turning points in the US housing market. One of the main objectives is to find a model based on internet search interest that generates reliable real-time forecasts. Design/methodology/approach - – Starting from seven individual real-estate-related Google search volume indices, a multivariate probit model is derived by following a selection procedure. The best model is then tested for its in- and out-of-sample forecasting ability. Findings - – The results show that the model predicts the direction of monthly price changes correctly, with over 89 per cent in-sample and just above 88 per cent in one to four-month out-of-sample forecasts. The out-of-sample tests demonstrate that although the Google model is not always accurate in terms of timing, the signals are always correct when it comes to foreseeing an upcoming turning point. Thus, as signals are generated up to six months early, it functions as a satisfactory and timely indicator of future house price changes. Practical implications - – The results suggest that Google data can serve as an early market indicator and that the application of this data set in binary forecasting models can produce useful predictions of changes in upward and downward movements of US house prices, as measured by the Case–Shiller 20-City House Price Index. This implies that real estate forecasters, economists and policymakers should consider incorporating this free and very current data set into their market forecasts or when performing plausibility checks for future investment decisions. Originality/value - – This is the first paper to apply Google search query data as a sentiment indicator in binary forecasting models to predict turning points in the housing market.

Keywords: Forecasting; Real estate; Sentiment; Google trends; Online search query data; Turning points (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eme:ijhmap:v:9:y:2016:i:1:p:108-136

DOI: 10.1108/IJHMA-12-2014-0058

Access Statistics for this article

International Journal of Housing Markets and Analysis is currently edited by Dr Richard Reed

More articles in International Journal of Housing Markets and Analysis from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().

 
Page updated 2025-03-19
Handle: RePEc:eme:ijhmap:v:9:y:2016:i:1:p:108-136