EconPapers    
Economics at your fingertips  
 

Consistency of System Identification by Global Total Least Squares

Christiaan Heij and Wolfgang Scherrer ()

No EI 9635-/A, Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute

Abstract: Global total least squares (GTLS) is a method for the identification of linear systems where no distinction between input and output variables is required. This method has been developed within the deterministic behavioural approach to systems. In this paper we analyse statistical properties of this method when the observations are generated by a multivariable stationary stochastic process. In particular, sufficient conditions for the consistency of GTLS are derived. This means that, when the number of observations tends to infinity, the identified deterministic system converges to the system that provides an optimal appoximation of the data generating process. The two main results are the following. GTLS is consistent if a guaranteed stability bound can be given a priori. If this information is not available, then consistency is obtained (at some loss of finite sample efficiency) if GTLS is applied to the observed data extended with zero values in past and future.

Keywords: behavioural approach; consistency; estimation; factor analysis; linear systems; stochastic systems (search for similar items in EconPapers)
Date: 1996-01-01
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://repub.eur.nl/pub/1387/eeb19960111120057.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ems:eureir:1387

Access Statistics for this paper

More papers in Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute Contact information at EDIRC.
Bibliographic data for series maintained by RePub ( this e-mail address is bad, please contact ).

 
Page updated 2025-03-30
Handle: RePEc:ems:eureir:1387