GenSVM: A Generalized Multiclass Support Vector Machine
Gertjan van den Burg and
Patrick Groenen (groenen@ese.eur.nl)
No EI 2014-33, Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute
Abstract:
__Abstract__ Traditional extensions of the binary support vector machine (SVM) to multiclass problems are either heuristics or require solving a large dual optimization problem. Here, a generalized multiclass SVM called GenSVM is proposed, which can be used for classification problems where the number of classes K is larger than or equal to 2. In the proposed method, classification boundaries are constructed in a K - 1 dimensional space. The method is based on a convex loss function, which is flexible due to several different weightings. An iterative majorization algorithm is derived that solves the optimization problem without the need of a dual formulation. The method is compared to seven other multiclass SVM approaches on a large number of datasets. These comparisons show that the proposed method is competitive with existing methods in both predictive accuracy and training time, and that it significantly outperforms several existing methods on these criteria.
Keywords: Support Vector Machines (SVMs); Multiclass Classification; Iterative Majorization; MM Algorithm; Classifier Comparison (search for similar items in EconPapers)
Pages: 32
Date: 2014-12-18
New Economics Papers: this item is included in nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://repub.eur.nl/pub/77638/EI2014-33.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ems:eureir:77638
Access Statistics for this paper
More papers in Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute Contact information at EDIRC.
Bibliographic data for series maintained by RePub (peter.vanhuisstede@eur.nl this e-mail address is bad, please contact repec@repec.org).