A COMPARISON OF SMALL AREA ESTIMATION METHODS FOR POVERTY MAPPING
María Guadarrama (maria.guadarrama@uc3m.es),
Isabel Molina (isabel.molina@uc3m.es) and
J. N. K. Rao (jrao@math.carleton.ca)
Additional contact information
María Guadarrama: Department of Statistics, Universidad Carlos III de Madrid. Address: C/Madrid 126, 28903 Getafe (Madrid), Spain
Isabel Molina: Department of Statistics, Universidad Carlos III de Madrid. Address: C/Madrid 126, 28903 Getafe (Madrid), Spain
J. N. K. Rao: School of Mathematics and Statistics, Carleton University
Statistics in Transition New Series, 2016, vol. 17, issue 1, 41-66
Abstract:
We review main small area estimation methods for the estimation of general nonlinear parameters focusing on FGT family of poverty...
Keywords: area level model; non-linear parameters; empirical best estimator; hierarchical Bayes; poverty mapping; unit level models (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
https://www.exeley.com/exeley/journals/statistics_ ... attrans-2016-005.pdf (application/pdf)
https://www.exeley.com/statistics_in_transition/doi/10.21307/stattrans-2016-005 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:exl:29stat:v:17:y:2016:i:1:p:41-66
DOI: 10.21307/stattrans-2016-005
Access Statistics for this article
More articles in Statistics in Transition New Series from Polish Statistical Association
Bibliographic data for series maintained by MPS Ltd. (scholarstor@mpslimited.com).