Real-time density forecasts from VARs with stochastic volatility
Todd Clark
No RWP 09-08, Research Working Paper from Federal Reserve Bank of Kansas City
Abstract:
Central banks and other forecasters have become increasingly interested in various aspects of density forecasts. However, recent sharp changes in macroeconomic volatility such as the Great Moderation and the more recent sharp rise in volatility associated with greater variation in energy prices and the deep global recession pose significant challenges to density forecasting. Accordingly, this paper examines, with real-time data, density forecasts of U.S. GDP growth, unemployment, inflation, and the federal funds rate from VAR models with stochastic volatility. The model of interest extends the steady state prior BVAR of Villani (2009) to include stochastic volatility, because, as found in some prior work and this paper, incorporating informative priors on the steady states of the model variables often improves the accuracy of point forecasts. The evidence presented in the paper shows that adding stochastic volatility to the BVAR with a steady state prior materially improves the real-time accuracy of point and density forecasts.
Date: 2009
New Economics Papers: this item is included in nep-cba, nep-ecm, nep-ets, nep-for and nep-ore
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.kansascityfed.org/documents/5319/pdf-rwp09-08.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:fip:fedkrw:rwp09-08
Ordering information: This working paper can be ordered from
Access Statistics for this paper
More papers in Research Working Paper from Federal Reserve Bank of Kansas City Contact information at EDIRC.
Bibliographic data for series maintained by Zach Kastens ().