The Univariate Collapsing Method for Portfolio Optimization
Marc S. Paolella
Additional contact information
Marc S. Paolella: Department of Banking and Finance, University of Zurich, Zurich 8032, Switzerland
Econometrics, 2017, vol. 5, issue 2, 1-33
Abstract:
The univariate collapsing method (UCM) for portfolio optimization is based on obtaining the predictive mean and a risk measure such as variance or expected shortfall of the univariate pseudo-return series generated from a given set of portfolio weights and multivariate set of assets under interest and, via simulation or optimization, repeating this process until the desired portfolio weight vector is obtained. The UCM is well-known conceptually, straightforward to implement, and possesses several advantages over use of multivariate models, but, among other things, has been criticized for being too slow. As such, it does not play prominently in asset allocation and receives little attention in the academic literature. This paper proposes use of fast model estimation methods combined with new heuristics for sampling, based on easily-determined characteristics of the data, to accelerate and optimize the simulation search. An extensive empirical analysis confirms the viability of the method.
Keywords: asset allocation; backtest-overfitting; non-ellipticity (search for similar items in EconPapers)
JEL-codes: B23 C C00 C01 C1 C2 C3 C4 C5 C8 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2225-1146/5/2/18/pdf (application/pdf)
https://www.mdpi.com/2225-1146/5/2/18/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jecnmx:v:5:y:2017:i:2:p:18-:d:97715
Access Statistics for this article
Econometrics is currently edited by Ms. Jasmine Liu
More articles in Econometrics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().