Formula I(1) and I(2): Race Tracks for Likelihood Maximization Algorithms of I(1) and I(2) Cointegrated VAR Models
Jurgen Doornik,
Rocco Mosconi () and
Paolo Paruolo
Econometrics, 2017, vol. 5, issue 4, 1-30
Abstract:
This paper provides some test cases, called circuits, for the evaluation of Gaussian likelihood maximization algorithms of the cointegrated vector autoregressive model. Both I(1) and I(2) models are considered. The performance of algorithms is compared first in terms of effectiveness , defined as the ability to find the overall maximum. The next step is to compare their efficiency and reliability across experiments. The aim of the paper is to commence a collective learning project by the profession on the actual properties of algorithms for cointegrated vector autoregressive model estimation, in order to improve their quality and, as a consequence, also the reliability of empirical research.
Keywords: maximum likelihood; Monte Carlo; VAR; cointegration; I(1); I(2) (search for similar items in EconPapers)
JEL-codes: B23 C C00 C01 C1 C2 C3 C4 C5 C8 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2225-1146/5/4/49/pdf (application/pdf)
https://www.mdpi.com/2225-1146/5/4/49/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jecnmx:v:5:y:2017:i:4:p:49-:d:119536
Access Statistics for this article
Econometrics is currently edited by Ms. Jasmine Liu
More articles in Econometrics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().