EconPapers    
Economics at your fingertips  
 

Two-Stage Electricity Demand Modeling Using Machine Learning Algorithms

Krzysztof Gajowniczek and Tomasz Ząbkowski
Additional contact information
Krzysztof Gajowniczek: Department of Informatics, Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences, Nowoursynowska 159, 02-787 Warsaw, Poland
Tomasz Ząbkowski: Department of Informatics, Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences, Nowoursynowska 159, 02-787 Warsaw, Poland

Energies, 2017, vol. 10, issue 10, 1-25

Abstract: Forecasting of electricity demand has become one of the most important areas of research in the electric power industry, as it is a critical component of cost-efficient power system management and planning. In this context, accurate and robust load forecasting is supposed to play a key role in reducing generation costs, and deals with the reliability of the power system. However, due to demand peaks in the power system, forecasts are inaccurate and prone to high numbers of errors. In this paper, our contributions comprise a proposed data-mining scheme for demand modeling through peak detection, as well as the use of this information to feed the forecasting system. For this purpose, we have taken a different approach from that of time series forecasting, representing it as a two-stage pattern recognition problem. We have developed a peak classification model followed by a forecasting model to estimate an aggregated demand volume. We have utilized a set of machine learning algorithms to benefit from both accurate detection of the peaks and precise forecasts, as applied to the Polish power system. The key finding is that the algorithms can detect 96.3% of electricity peaks (load value equal to or above the 99th percentile of the load distribution) and deliver accurate forecasts, with mean absolute percentage error (MAPE) of 3.10% and resistant mean absolute percentage error (r-MAPE) of 2.70% for the 24 h forecasting horizon.

Keywords: machine learning; electricity forecasting; demand modeling; peak identification (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/10/1547/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/10/1547/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:10:p:1547-:d:114315

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1547-:d:114315