EconPapers    
Economics at your fingertips  
 

Chemical Characteristics and NaCl Component Behavior of Biochar Derived from the Salty Food Waste by Water Flushing

Ye-Eun Lee, Jun-Ho Jo, I-Tae Kim and Yeong-Seok Yoo
Additional contact information
Ye-Eun Lee: Division of Environment and Plant Engineering, Korea Institute of Civil Engineering and Building Technology 283, Goyang-daero, Ilsanseo-gu, Goyang-si, Gyeonggi-do 10223, Korea
Jun-Ho Jo: Division of Environment and Plant Engineering, Korea Institute of Civil Engineering and Building Technology 283, Goyang-daero, Ilsanseo-gu, Goyang-si, Gyeonggi-do 10223, Korea
I-Tae Kim: Division of Environment and Plant Engineering, Korea Institute of Civil Engineering and Building Technology 283, Goyang-daero, Ilsanseo-gu, Goyang-si, Gyeonggi-do 10223, Korea
Yeong-Seok Yoo: Division of Environment and Plant Engineering, Korea Institute of Civil Engineering and Building Technology 283, Goyang-daero, Ilsanseo-gu, Goyang-si, Gyeonggi-do 10223, Korea

Energies, 2017, vol. 10, issue 10, 1-15

Abstract: Biochar is the product of the pyrolysis of organic materials in a reduced state. In recent years, biochar has received attention due to its applicability to organic waste management, thereby leading to active research on biochar. However, there have been few studies using food waste. In particular, the most significant difference between food waste and other organic waste is the high salinity of food waste. Therefore, in this paper, we compare the chemical characteristics of biochar produced using food waste containing low- and high-concentration salt and biochar flushed with water to remove the concentrated salt. In addition, we clarify the salt component behavior of biochar. Peak analysis of XRD confirms that it is difficult to find salt crystals in flushed char since salt remains in the form of crystals when salty food waste is pyrolyzed washed away after water flushing. In addition, the Cl content significantly decreased to 1–2% after flushing, similar to that of Cl content in the standard, non-salted food waste char. On the other hand, a significant amount of Na was found in pyrolyzed char even after flushing resulting from a phenomenon in which salt is dissolved in water while flushing and Na ions are adsorbed. FT-IR analysis showed that salt in waste affects the binding of aromatic carbons to compounds in the pyrolysis process. The NMR spectroscopy demonstrated that the aromatic carbon content, which indicates the stability of biochar, is not influenced by the salt content and increases with increasing pyrolysis temperature.

Keywords: salty food waste; FT-IR; pyrolysis; biochar; NaCl (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/10/1555/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/10/1555/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:10:p:1555-:d:114462

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1555-:d:114462