Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel
A. K. Azad
Additional contact information
A. K. Azad: School of Engineering and Technology, Central Queensland University, Melbourne VIC 3000, Australia
Energies, 2017, vol. 10, issue 11, 1-22
Abstract:
Mandarin (Citrus reticulata) is one of the most popular fruits in tropical and sub-tropical countries around the world. It contains about 22–34 seeds per fruit. This study investigated the potential of non-edible mandarin seed oil as an alternative fuel in Australia. The seeds were prepared after drying in the oven for 20 h to attain an optimum moisture content of around 13.22%. The crude oil was extracted from the crushed seed using 98% n -hexane solution. The biodiesel conversion reaction (transesterification) was designed according to the acid value (mg KOH/g) of the crude oil. The study also critically examined the effect of various reaction parameters (such as effect of methanol: oil molar ratio, % of catalyst concentration, etc.) on the biodiesel conversion yield. After successful conversion of the bio-oil into biodiesel, the physio-chemical fuel properties of the virgin biodiesel were measured according to relevant ASTM standards and compared with ultra-low sulphur diesel (ULSD) and standard biodiesel ASTM D6751. The fatty acid methyl esters (FAMEs) were analysed by gas chromatography (GC) using the EN 14103 standard. The behaviour of the biodiesel (variation of density and kinematic viscosity) at various temperatures (10–40 °C) was obtained and compared with that of diesel fuel. Finally, mass and energy balances were conducted for both the oil extraction and biodiesel conversion processes to analyse the total process losses of the system. The study found 49.23 wt % oil yield from mandarin seed and 96.82% conversion efficiency for converting oil to biodiesel using the designated transesterification reaction. The GC test identified eleven FAMEs. The biodiesel mainly contains palmitic acid (C16:0) 26.80 vol %, stearic acid (C18:0) 4.93 vol %, oleic acid (C18:1) 21.43 vol % (including cis. and trans.), linoleic acid (C18:2) 4.07 vol %, and less than one percent each of other fatty acids. It is an important source of energy because it has a higher heating value of 41.446 MJ/kg which is close to ULSD (45.665 MJ/kg). In mass and energy balances, 49.23% mass was recovered as crude bio-oil and 84.48% energy was recovered as biodiesel from the total biomass.
Keywords: mandarin seed oil; biodiesel; transesterification; fatty acid methyl esters; mass and energy balance (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/11/1689/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/11/1689/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:11:p:1689-:d:116493
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().