EconPapers    
Economics at your fingertips  
 

Design and Experiment of Nonlinear Observer with Adaptive Gains for Battery State of Charge Estimation

Linhui Zhao, Guohuang Ji and Zhiyuan Liu
Additional contact information
Linhui Zhao: Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Guohuang Ji: China First Automotive Works (FAW) Group Corporation New Energy Vehicle Branch, Changchun 130122, China
Zhiyuan Liu: Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

Energies, 2017, vol. 10, issue 12, 1-20

Abstract: State of charge (SOC) is an important evaluation index for lithium-ion batteries (LIBs) in electric vehicles (EVs). This paper proposes a nonlinear observer with a new adaptive gain structure for SOC estimation based on a second-order RC model. It is able to dynamically adjust the gains and obtain a better balance between convergence speed and estimation accuracy with less computational time. A sufficient condition is derived to guarantee the uniform asymptotic stability of the observer, and its robustness with respect to disturbances and uncertainties is analyzed with the help of input-to-state stability (ISS) theory. A selection guide of the observer gains in practical application is presented. The estimation accuracy and convergence rate of the observer are evaluated and compared with those of extended Kalman filter (EKF) based on multi-temperature datasets from two different types of LIB cells. The robustness against different disturbances and uncertainties that may appear in a real vehicle is validated and discussed in detail. The experimental results show that the proposed observer is capable of achieving better performance with less computational time in comparison to EKF for different types of LIB cells under various working conditions. The observer is also capable of estimating SOC accurately for real life conditions according to the validation results of datasets from a battery management system (BMS) in an EV battery pack. Furthermore, the observer is simple enough, and is suitable for implementation on embedded hardware for LIB cells of EVs.

Keywords: electric vehicle; lithium-ion battery; state of charge estimation; nonlinear observer; input-to-state stability; robustness analysis and testing (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/12/2046/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/12/2046/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:12:p:2046-:d:121407

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2046-:d:121407