EconPapers    
Economics at your fingertips  
 

Study on the Tribological Characteristics of Australian Native First Generation and Second Generation Biodiesel Fuel

Md Mofijur Rahman, Mohammad Rasul and Nur Md Sayeed Hassan
Additional contact information
Md Mofijur Rahman: School of Engineering and Technology, Central Queensland University, Rockhampton, Queensland 4702, Australia
Mohammad Rasul: School of Engineering and Technology, Central Queensland University, Rockhampton, Queensland 4702, Australia
Nur Md Sayeed Hassan: School of Engineering and Technology, Central Queensland University, Rockhampton, Queensland 4702, Australia

Energies, 2017, vol. 10, issue 1, 1-16

Abstract: Biodiesels are a renewable energy source, and they have the potential to be used as alternatives to diesel fuel. The aim of this study is to investigate the wear and friction characteristics of Australian native first generation and second generation biodiesels using a four-ball tribo tester. The biodiesel was produced through a two-step transesterification process and characterized according to the American Society for Testing and Materials (ASTM) standards. The tribological experiment was carried out at a constant 1800 rpm and different loads and temperatures. In addition, the surface morphology of the ball was tested by scanning electron microscope (SEM)/energy dispersive X-ray spectroscopy (EDX) analysis. The test results indicated that biodiesel fuels have a lower coefficient of frictions (COF) and lower wear scar diameter (WSD) up to 83.50% and 41.28%, respectively, compared to conventional diesel fuel. The worn surface area results showed that biodiesel fuel has a minimum percentage of C and O, except Fe, compared to diesel. In addition, the worn surface area for diesel was found (2.20%–27.92%) to be higher than biodiesel. The findings of this study indicated that both first and second generation biodiesel fuels have better tribological performance than diesel fuel, and between the biodiesel fuels, macadamia biodiesel showed better lubrication performance.

Keywords: renewable energy; wear and friction; beauty leaf biodiesel; macadamia biodiesel (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/1/55/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/1/55/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:1:p:55-:d:86936

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:55-:d:86936