EconPapers    
Economics at your fingertips  
 

Comparison of Various Analysis Methods Based on Heat Flowmeters and Infrared Thermography Measurements for the Evaluation of the In Situ Thermal Transmittance of Opaque Exterior Walls

Doo Sung Choi and Myeong Jin Ko
Additional contact information
Doo Sung Choi: Department of Building Equipment & Fire Protection System, Chungwoon University, Incheon 22100, Korea
Myeong Jin Ko: Nabi Building Environment & Equipment Design Consultant Co., Ltd, Seoul 06226, Korea

Energies, 2017, vol. 10, issue 7, 1-22

Abstract: There are several methods to obtain the in situ thermal transmittance value (U-value) of building envelopes from on-site data, including the three approaches of the progressive average method, average method considering the thermal storage effect, and dynamic method for deriving the U-value from heat flowmeter (HFM) measurements and the four methods with different formulas to analyze infrared thermography (IRT) measurement data. Since each of these methods considers different parameters and the non-steady characteristics of the heat transfer in building walls in their own way, discrepancies may occur among the obtained results. This study evaluates and compares the in situ U-values by using various methods of analyzing HFM and IRT measurement data. Further, by investigating buildings with similar materials and identical stratigraphies, but with different construction years, we analyze the discrepancy between the designed and measured values caused by material deterioration and evaluate the errors according to the analysis method. The percentage deviation between the U-values obtained by the three methods from the HFM data is found to be satisfactory, being within 10%. When compared with the results of the progressive average method, the deviations for the four different IRT-measurement-based methods vary greatly, being in the range of 6–43%.

Keywords: in situ thermal transmittance; heat flowmeter; infrared thermography; on-site measurement; opaque exterior wall (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/7/1019/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/7/1019/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:7:p:1019-:d:104993

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1019-:d:104993