Optimization Design Method and Experimental Validation of a Solar PVT Cogeneration System Based on Building Energy Demand
Chao Zhou,
Ruobing Liang and
Jili Zhang
Additional contact information
Chao Zhou: Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
Ruobing Liang: Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
Jili Zhang: Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
Energies, 2017, vol. 10, issue 9, 1-20
Abstract:
Photovoltaic-thermal (PVT) technology refers to the integration of a photovoltaic (PV) and a conventional solar thermal collector, representing the deep exploitation and utilization of solar energy. In this paper, we evaluate the performance of a solar PVT cogeneration system based on specific building energy demand using theoretical modeling and experimental study. Through calculation and simulation, the dynamic heating load and electricity load is obtained as the basis of the system design. An analytical expression for the connection of PVT collector array is derived by using basic energy balance equations and thermal models. Based on analytical results, an optimized design method was carried out for the system. In addition, the fuzzy control method of frequency conversion circulating water pumps and pipeline switching by electromagnetic valves is introduced in this paper to maintain the system at an optimal working point. Meanwhile, an experimental setup is established, which includes 36 PVT collectors with every 6 PVT collectors connected in series. The thermal energy generation, thermal efficiency, power generation and photovoltaic efficiency have been given in this paper. The results demonstrate that the demonstration solar PVT cogeneration system can meet the building energy demand in the daytime in the heating season.
Keywords: PVT; building energy demand; theoretical analysis; fuzzy control method; experimental study (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/9/1281/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/9/1281/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:9:p:1281-:d:110031
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().