EconPapers    
Economics at your fingertips  
 

New Design of a CNG-H 2 -AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study

Hussein A. Mahmood, Nor Mariah. Adam, B. B. Sahari and S. U. Masuri
Additional contact information
Hussein A. Mahmood: Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Nor Mariah. Adam: Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
B. B. Sahari: Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
S. U. Masuri: Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Energies, 2017, vol. 10, issue 9, 1-27

Abstract: Several studies have aimed to convert diesel engines to dual- or tri-fuel engines to improve their fuel economy and reduce the emissions from diesel engine, however, most of these studies do not consider enhancing the homogeneity of fuel mixtures inside the engine and accurately controlling the air fuel ratio. In this study, a new air-fuel mixer was designed, manufactured and tested. The proposed air-gaseous fuel mixer design was conceived to be suitable for mixing air with compressed natural gas (CNG) and a blend of hydrogen and compressed natural gas (HCNG) that gives homogenous mixtures with high uniformity index and also to be easily connected with an Electronic Control Unit (ECU) for controlling accurately the air-gaseous fuel ratio for different engine speeds. For optimizing the homogeneity inside the new mixer, fourteen different mixer models were created to investigate the effects of diameter, location, and the number of holes inside the mixer on the homogeneity and distribution of the mixtures. Computational fluid dynamics analysis software was used to check the flow behavior, distribution and homogeneity of mixtures inside the new mixer models. The simulation results revealed that the best uniformity index (UI) values are obtained in model 7 where the UI values are 0.939 and 0.937, respectively, for an air fuel ratio for a blend of hydrogen and compressed natural gas (AFRHCNG) = 51.31 and the air fuel ratio for compressed natural gas (AFRCNG) = 34.15. According to the numerical and experimental results for the new mixer (model 7) under different engine speeds (1000–4000) and air-CNG ratio of 34.15, a meaningful agreement is reached between the experimental and numerical values for AFRCNG (coefficient of determination ( R 2 ) = 0.96 and coefficient of variation ( CoV ) = 0.001494).

Keywords: homogeneity of the mixture; air-CNG-hydrogen mixer; internal combustion engines; computational fluid dynamics (CFD) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/9/1373/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/9/1373/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:9:p:1373-:d:111482

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1373-:d:111482