Initial Comparison of Lithium Battery and High-Temperature Thermal-Turbine Electricity Storage for 100% Wind and Solar Electricity Supply on Prince Edward Island
Andrew Swingler and
Matthew Hall
Additional contact information
Andrew Swingler: Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A-4P3, Canada
Matthew Hall: Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A-4P3, Canada
Energies, 2018, vol. 11, issue 12, 1-12
Abstract:
Due to fundamental temporal mismatches between renewable energy generation and demand load, a long-duration energy storage system is required to power Prince Edward Island’s (PEI) electricity system exclusively from on-island wind and solar resources. While a very large lithium battery is a technically capable solution, today’s battery technology is not cost effective; even as wind and solar generation costs become increasingly competitive with fossil fuel alternatives. To explore alternative storage technologies this comparative study utilizes the established hybrid optimization model for multiple energy resources (HOMER) techno-economic modeling tool to perform an application-based high-level comparison of an efficient but costly lithium battery technology solution with a much less efficient but lower-cost thermal-storage with steam-turbine concept; both capable of enabling a 100% wind and solar powered electricity supply for the island. Interestingly, the thermal storage turbine concept is shown to be competitive, at least in principle, with projected cost reductions in lithium battery technologies while also offering a number of distinct practical advantages.
Keywords: renewable energy; wind; solar; seasonal energy storage; low carbon power systems; high temperature thermal storage (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/12/3470/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/12/3470/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:12:p:3470-:d:189841
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().