EconPapers    
Economics at your fingertips  
 

Gaussian Process Operational Curves for Wind Turbine Condition Monitoring

Ravi Pandit and David Infield
Additional contact information
Ravi Pandit: Electronics and Electrical Engineering, University of Strathclyde, Glasgow G49YH, UK
David Infield: Electronics and Electrical Engineering, University of Strathclyde, Glasgow G49YH, UK

Energies, 2018, vol. 11, issue 7, 1-20

Abstract: Due to the presence of an abundant resource, wind energy is one of the most promising renewable energy resources for power generation globally, and there is constant need to reduce operation and maintenance costs to make the wind industry more profitable. Unexpected failures of turbine components make operation and maintenance (O&M) expensive, and because of transport and availability issues, the O&M cost is much higher in offshore wind farms (typically 30% of the levelized cost). To overcome this, supervisory control and data acquisition (SCADA) based predictive condition monitoring can be applied to remotely identify early failures and limit downtime, boost production and decrease the cost of energy (COE). A Gaussian Process is a nonlinear, nonparametric machine learning approach which is widely used in modelling complex nonlinear systems. In this paper, a Gaussian Process algorithm is proposed to estimate operational curves based on key turbine critical variables which can be used as a reference model in order to identify critical wind turbine failures and improve power performance. Three operational curves, namely, the power curve, rotor speed curve and blade pitch angle curve, are constructed using the Gaussian Process approach for continuous monitoring of the performance of a wind turbine. These developed GP operational curves can be useful for recognizing failures that force the turbines to underperform and result in downtime. Historical 10-min SCADA data are used for the model training and validation.

Keywords: condition monitoring; Gaussian Process; performance monitoring; turbine operational curves (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/7/1631/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/7/1631/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:7:p:1631-:d:153879

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1631-:d:153879