EconPapers    
Economics at your fingertips  
 

Practical Maximum-Power Extraction in Single Microbial Fuel Cell by Effective Delivery through Power Management System

Jeongjin Yeo, Taeyoung Kim, Jae Kyung Jang and Yoonseok Yang
Additional contact information
Jeongjin Yeo: Division of Biomedical Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea
Taeyoung Kim: Energy and Environmental Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, 310 Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 54875, Korea
Jae Kyung Jang: Energy and Environmental Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, 310 Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 54875, Korea
Yoonseok Yang: Division of Biomedical Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea

Energies, 2018, vol. 11, issue 9, 1-11

Abstract: Power management systems (PMSs) are essential for the practical use of microbial fuel cell (MFC) technology, as they replace the unstable stacking of MFCs with step-up voltage conversion. Maximum-power extraction technology could improve the power output of MFCs; however, owing to the power consumption of the PMS operation, the maximum-power extraction point cannot deliver maximum power to the application load. This study proposes a practical power extraction for single MFCs, which reserves more electrical energy for an application load than conventional maximum power-point tracking (MPPT). When experimentally validated on a real MFC, the proposed method delivered higher output power during a longer PMS operation time than MPPT. The maximum power delivery enables more effective power conditioning of various micro-energy harvesting systems.

Keywords: microbial fuel cell; energy harvesting; power management system; maximum-power point; constant voltage ratio maximum power-point tracking (MPPT) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/9/2312/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/9/2312/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:9:p:2312-:d:167326

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2312-:d:167326