Optimization of the Fuel Cell Renewable Hybrid Power System Using the Control Mode of the Required Load Power on the DC Bus
Nicu Bizon,
Valentin Alexandru Stan and
Angel Ciprian Cormos
Additional contact information
Nicu Bizon: Faculty of Electronics, Communication and Computers, University of Pitesti, 1 Targu din Vale, 110040 Pitesti, Romania
Valentin Alexandru Stan: Polytechnic University of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
Angel Ciprian Cormos: Polytechnic University of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
Energies, 2019, vol. 12, issue 10, 1-15
Abstract:
In this paper, a systematic analysis of seven control topologies is performed, based on three possible control variables of the power generated by the Fuel Cell (FC) system: the reference input of the controller for the FC boost converter, and the two reference inputs used by the air regulator and the fuel regulator. The FC system will generate power based on the Required-Power-Following (RPF) control mode in order to ensure the load demand, operating as the main energy source in an FC hybrid power system. The FC system will operate as a backup energy source in an FC renewable Hybrid Power System (by ensuring the lack of power on the DC bus, which is given by the load power minus the renewable power). Thus, power requested from the batteries’ stack will be almost zero during operation of the FC hybrid power system based on RPF-control mode. If the FC hybrid power system operates with a variable load demand, then the lack or excess of power on the DC bus will be dynamically ensured by the hybrid battery/ultracapacitor energy storage system for a safe transition of the FC system under the RPF-control mode. The RPF-control mode will ensure a fair comparison of the seven control topologies based on the same optimization function to improve the fuel savings. The main objective of this paper is to compare the fuel economy obtained by using each strategy under different load cycles in order to identify which is the best strategy operating across entire loading or the best switching strategy using two strategies: one strategy for high load and the other on the rest of the load range. Based on the preliminary results, the fuel consumption using these best strategies can be reduced by more than 15%, compared to commercial strategies.
Keywords: hybrid power systems; renewable energy sources; fuel cell systems; required-power-following control; optimization; fuel economy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/10/1889/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/10/1889/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:10:p:1889-:d:232204
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().