The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions
Karol Tucki,
Olga Orynycz,
Antoni Świć and
Mateusz Mitoraj-Wojtanek
Additional contact information
Karol Tucki: Department of Organization and Production Engineering, Warsaw University of Life Sciences, Nowoursynowska Street 164, 02-787 Warsaw, Poland
Olga Orynycz: Department of Production Management, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland
Antoni Świć: Faculty of Mechanical Engineering, Institute of Technological Information Systems, Lublin University of Technology, Nadbystrzycka 38 D, 20-618 Lublin, Poland
Mateusz Mitoraj-Wojtanek: Department of Organization and Production Engineering, Warsaw University of Life Sciences, Nowoursynowska Street 164, 02-787 Warsaw, Poland
Energies, 2019, vol. 12, issue 15, 1-22
Abstract:
The article analyzes the dynamics of the development of the electromobility sector in Poland in the context of the European Union and due to the economic situation and development of the electromobility sector in the contexts of Switzerland and Norway. On the basis of obtained data, a forecast was made which foresees the most likely outlook of the electric car market in the coming years. The forecast was made using the creeping trend method, and extended up to 2030. As part of the analysis of the effect of the impact of electromobility, an original method was proposed for calculating the primary energy factor (PEF) primary energy ratio in the European Union and in its individual countries, which illustrates the conversion efficiency of primary energy into electricity and the overall efficiency of the power system. The original method was also verified, referring to the methods proposed by the Fraunhofer-Institut. On the basis of all previous actions and analyses, an assessment was made of the impact of the development of the electromobility sector on air quality in the countries studied. Carbon dioxide tank-to-wheels emission reductions which result from the conversion of the car fleet from conventional vehicles to electric motors were then calculated. In addition to reducing carbon dioxide emissions, other pollutant emissions were also calculated, such as carbon monoxide (CO), nitrogen oxides (NO x ) and particulate matter (PM). The increase in the demand for electricity resulting from the needs of electric vehicles was also estimated. On this basis, and also on the basis of previously calculated primary energy coefficients, the emission reduction values have been adjusted for additional emissions resulting from the generation of electricity in power plants.
Keywords: electromobility; CO 2 reduction; EU (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (43)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/15/2942/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/15/2942/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:15:p:2942-:d:253320
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().