Effect of Tip Clearance on Flow Field and Heat Transfer Characteristics in a Large Meridional Expansion Turbine
Fusheng Meng,
Qun Zheng,
Jie Gao and
Weiliang Fu
Additional contact information
Fusheng Meng: College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
Qun Zheng: College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
Jie Gao: College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
Weiliang Fu: College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
Energies, 2019, vol. 12, issue 1, 1-19
Abstract:
The large meridional expansion turbine stator leads to complex secondary flows and heat transfer characteristics in the blade endwall region, while the upstream tip clearance leakage flow of the rotor makes it more complex in flow and heat transfer. The influence of the upstream rotor tip clearance on the large meridian expansion stator is worth studying. The flow and heat transfer characteristics of the downstream large meridional expansion turbine stator were studied by comparing the tip leakage flow of 1.5-stage shrouded and unshrouded turbines using a three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solver for viscous turbulent flows. Validation studies were performed to investigate the aerodynamics and heat transfer prediction ability of the shear stress transport (SST) turbulence model. The influence of different tip clearances of the rotor including unshrouded blade heights of 0%, 1% and 5% and a 1% shrouded blade height were investigated through numerical simulation. The results showed that the upper passage vortex separation was more serious and the separation, and attachment point of horseshoe vortex in the pressure side were significantly more advanced than that of non-expansion turbines. The tip leakage vortex obviously increased the negative incidence angle at the downstream inlet. Furthermore, the strength of the high heat transfer zone on the suction surface of the downstream stator was significantly increased, while that of the shrouded rotor decreased.
Keywords: large meridional expansion; tip clearance; heat transfer; shrouded turbine; tip leakage vortex (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/1/162/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/1/162/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:1:p:162-:d:194846
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager (indexing@mdpi.com).