Comparative Life Cycle Assessment of HTC Concepts Valorizing Sewage Sludge for Energetic and Agricultural Use
Kathleen Meisel,
Andreas Clemens,
Christoph Fühner,
Marc Breulmann,
Stefan Majer and
Daniela Thrän
Additional contact information
Kathleen Meisel: Deutsches Biomasseforschungszentrum Gemeinnützige GmbH (DBFZ), Bioenergy Systems Department, Torgauer Straße 116, 04347 Leipzig, Germany
Andreas Clemens: Deutsches Biomasseforschungszentrum Gemeinnützige GmbH (DBFZ), Bioenergy Systems Department, Torgauer Straße 116, 04347 Leipzig, Germany
Christoph Fühner: Helmholtz Centre for Environmental Research (UFZ), Environmental and Biotechnology Centre, Permoserstraße 15, 04318 Leipzig, Germany
Marc Breulmann: Helmholtz Centre for Environmental Research (UFZ), Environmental and Biotechnology Centre, Permoserstraße 15, 04318 Leipzig, Germany
Stefan Majer: Deutsches Biomasseforschungszentrum Gemeinnützige GmbH (DBFZ), Bioenergy Systems Department, Torgauer Straße 116, 04347 Leipzig, Germany
Daniela Thrän: Deutsches Biomasseforschungszentrum Gemeinnützige GmbH (DBFZ), Bioenergy Systems Department, Torgauer Straße 116, 04347 Leipzig, Germany
Energies, 2019, vol. 12, issue 5, 1-16
Abstract:
In many countries, sewage sludge is directly used for energy and agricultural purposes after dewatering or digestion and dewatering. In recent years, there has been a growing interest in additional upstream hydrothermal carbonization (HTC), which could lead to higher yields in the energetic and agricultural use. Twelve energetic and agricultural valorization concepts of sewage sludge are defined and assessed for Germany to investigate whether the integration of HTC will have a positive effect on the greenhouse gas (GHG) emissions. The study shows that the higher expenses within the HTC process cannot be compensated by additional energy production and agricultural yields. However, the optimization of the HTC process chain through integrated sewage sludge digestion and process water recirculation leads to significant reductions in GHG emissions of the HTC concepts. Subsequently, nearly the same results can be achieved when compared to the direct energetic use of sewage sludge; in the agricultural valorization, the optimized HTC concept would be even the best concept if the direct use of sewage sludge will no longer be permitted in Germany from 2029/2032. Nevertheless, the agricultural valorization concepts are not generally advantageous when compared to the energetic valorization concepts, as it is shown for two concepts.
Keywords: hydrothermal carbonization (HTC); life cycle assessment (LCA); sewage sludge; electricity and heat production; agricultural yield (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/5/786/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/5/786/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:5:p:786-:d:209328
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().