Development of a Model for the Estimation of the Energy Consumption Associated with the Transportation of CO 2 in Pipelines
Steven Jackson
Additional contact information
Steven Jackson: UiT—The Arctic University of Norway, 9019 Tromsø, Norway
Energies, 2020, vol. 13, issue 10, 1-17
Abstract:
All Carbon Capture and Storage (CCS) projects require the transportation of CO 2 from a source to a storage location. Although, a compressor and a large diameter pipeline is the normal method used to achieve this, liquefaction, shipping and pumping is sometimes attractive. Identifying the economic optimum is important for all CCS projects, minimizing energy consumption is also important because it corresponds to a resource efficiency in fossil-fuel based projects. This article describes the development and validation of a model that estimates the energy consumption associate with CO 2 transportation using the geographic location of the source and the reservoir to incorporate ambient temperature and bathymetry data. The results of the validation work show an average absolute temperature and pressure error less than 1 °C and 1 bar compared to a reference model. The model has been developed using openly accessible data and is made available in a repository for open research data.
Keywords: pipelines; liquefaction; shipping; CO 2; transport; CCS; energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/10/2427/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/10/2427/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:10:p:2427-:d:357221
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().