Alternative Fuels from Forestry Biomass Residue: Torrefaction Process of Horse Chestnuts, Oak Acorns, and Spruce Cones
Arkadiusz Dyjakon and
Tomasz Noszczyk
Additional contact information
Arkadiusz Dyjakon: Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
Tomasz Noszczyk: Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
Energies, 2020, vol. 13, issue 10, 1-19
Abstract:
The global energy system needs new, environmentally friendly, alternative fuels. Biomass is a good source of energy with global potential. Forestry biomass (especially wood, bark, or trees fruit) can be used in the energy process. However, the direct use of raw biomass in the combustion process (heating or electricity generation) is not recommended due to its unstable and low energetic properties. Raw biomass is characterized by high moisture content, low heating value, and hydrophilic propensities. The initial thermal processing and valorization of biomass improves its properties. One of these processes is torrefaction. In this study, forestry biomass residues such as horse chestnuts, oak acorns, and spruce cones were investigated. The torrefaction process was carried out in temperatures ranging from 200 °C to 320 °C in a non-oxidative atmosphere. The raw and torrefied materials were subjected to a wide range of tests including proximate analysis, fixed carbon content, hydrophobicity, density, and energy yield. The analyses indicated that the torrefaction process improves the fuel properties of horse chestnuts, oak acorns, and spruce cones. The properties of torrefied biomass at 320 °C were very similar to hard coal. In the case of horse chestnuts, an increase in fixed carbon content from 18.1% to 44.7%, and a decrease in volatiles from 82.9% to 59.8% were determined. Additionally, torrefied materials were characterized by their hydrophobic properties. In terms of energy yield, the highest value was achieved for oak acorns torrefied at 280 °C and amounted to 1.25. Moreover, higher heating value for the investigated forestry fruit residues ranged from 24.5 MJ·kg −1 to almost 27.0 MJ·kg −1 (at a torrefaction temperature of 320 °C).
Keywords: biomass residues; forestry; torrefaction; thermal treatment; biomass valorization; torrefied material properties (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/10/2468/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/10/2468/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:10:p:2468-:d:357891
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().