EconPapers    
Economics at your fingertips  
 

Multi-Objective Sizing Optimization of a Grid-Connected Solar–Wind Hybrid System Using Climate Classification: A Case Study of Four Locations in Southern Taiwan

Kumar Shivam, Jong-Chyuan Tzou and Shang-Chen Wu
Additional contact information
Kumar Shivam: Department of Mechanical Engineering, Kun Shan University, No.195, Kunda Rd., Yongkang Dist., Tainan City 710, Taiwan
Jong-Chyuan Tzou: Department of Mechanical Engineering, Kun Shan University, No.195, Kunda Rd., Yongkang Dist., Tainan City 710, Taiwan
Shang-Chen Wu: Department of Mechanical Engineering, Kun Shan University, No.195, Kunda Rd., Yongkang Dist., Tainan City 710, Taiwan

Energies, 2020, vol. 13, issue 10, 1-30

Abstract: Increased concerns over global warming and air pollution has pushed governments to consider renewable energy as an alternative to meet the required energy demands of countries. Many government policies are deployed in Taiwan to promote solar and wind energy to cope with air pollution and self-dependency for energy generation. However, the residential sector contribution is not significant despite higher feed-in tariff rates set by government. This study analyzes wind and solar power availability of four different locations of southern Taiwan, based on the Köppen–Geiger climate classification system. The solar–wind hybrid system (SWHS) considered in this study consists of multi-crystalline photovoltaic (PV) modules, vertical wind turbines, inverters and batteries. Global reanalysis weather data and a climate-based electricity load profile at a 1-h resolution was used for the simulation. A general framework for multi-objective optimization using this simulation technique is proposed for solar–wind hybrid system, considering the feed-in tariff regulations, environmental regulations and installation area constraints of Taiwan. The hourly load profile is selected using a climate classification system. A decomposition-based differential evolutionary algorithm is used for finding the optimal Pareto set of two economic objectives and one environmental objective with maximum installation area and maximum PV capacity constraints. Two types of buildings are chosen for analysis at four climate locations. Analysis of Pareto sets revealed that the photovoltaic modules are economic options for a grid-connected mode at all four locations, whereas solar–wind hybrid systems are more environmentally friendly. A method of finding the fitness index for the Pareto front sets and a balanced strategy for choosing the optimal configuration is proposed. The proposed balanced strategy provides savings to users—up to 49% for urban residential buildings and up to 32% for rural residential buildings with respect to buildings without a hybrid energy system (HES)—while keeping carbon dioxide (CO 2 ) emissions lower than 50% for the total project lifecycle time of 20 years. The case study reveals that for all four locations and two building types an HES system comprising a 15 kW photovoltaic system and a small capacity battery bank provides the optimal balance between economic and environmental objectives.

Keywords: climate classification; constrained optimization; decomposition; differential evolutionary algorithm; hybrid power systems; multi-objective optimization; power grid; solar energy; wind energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/10/2505/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/10/2505/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:10:p:2505-:d:358834

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2505-:d:358834