EconPapers    
Economics at your fingertips  
 

Modeling and Optimal Dimensioning of a Pumped Hydro Energy Storage System for the Exploitation of the Rejected Wind Energy in the Non-Interconnected Electrical Power System of the Crete Island, Greece

Triantafyllia Nikolaou, George S. Stavrakakis and Konstantinos Tsamoudalis
Additional contact information
Triantafyllia Nikolaou: Organization for the Development of Crete SA, GR-73100 Chania, Greece
George S. Stavrakakis: Electrical and Computer Engineering School, Technical University of Crete, GR-73100 Chania, Greece
Konstantinos Tsamoudalis: Electrical and Computer Engineering School, Technical University of Crete, GR-73100 Chania, Greece

Energies, 2020, vol. 13, issue 11, 1-21

Abstract: The aim of the present paper is to investigate the use of the site “Potamon” Dam in the Prefecture of Rethymnon, Crete island, Greece, as a “virtual” renewable electricity supply of a pumped storage plant (PSP) in order to save and exploit the maximum possible part of the rejected wind energy of the autonomous power system of the Crete island. Taking into account the annual time series of the rejected power of the Crete power grid, the present research work targets the optimal configuration of the proposed PSP power station, including the sizing of its individual components as well as the determination of the capacity it could guarantee in order to be economically viable. The rejected electric energy from the actually operating wind farm production, which is not possible to be absorbed by the grid of Crete due to its stable operation limitations, could be absorbed by the here proposed pump storage plant (PSP) and converted to hydraulic energy. This can be achieved by pumping the water from the lower reservoir, which is the existing reservoir of the site “Potamon” Dam, with a storage capacity of about 22.5 million m 3 , up to the upper reservoir, which must be constructed accordingly. For the proposed PSP’s optimal size determination, established financial indices are used as an evaluation criterion for an investment life cycle of 25 years. The proposed PSP optimization is based on the dynamic mathematical model of the simulation results of the PSP’s hourly operation when incorporated in the Crete power grid for a whole year, performed in the Matlab 2016b computational environment (The MathWorks, Inc., Natick, MA, USA). The results of this research demonstrate the PSP’s technical feasibility and determine the PSP’s optimal CAPEX and the PSP’s whole life-time financial indicators in order that the whole investment be viable. Furthermore, the appropriate selling prices of the electricity produced from the proposed PSP were determined to achieve the PSP’s financial viability. The results comprise the key elements to prove the necessity for the establishment a.s.a.p. of the appropriate legal framework in order to have authorization to exploit the rejected RES (renewable energy sources) electric energy or the major part of it through PSPs, in priority in both the non-interconnected, as well as the interconnected power systems.

Keywords: non-interconnected power systems; pumped storage hydro power plants; optimization of isolated power grid including pump storage hydro plant; rejected wind energy electricity; isolated power grid stability; guaranteed capacity; water–energy nexus (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/11/2705/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/11/2705/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:11:p:2705-:d:364258

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2705-:d:364258